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Summary

‘This paper presents initial results on spatially
variant recursive estimation of images. Parameters
of block-wise constant recursive model are identif-
ied on noise free data. The models are then used
to design reduced update Kalman filters which are
applied to noisy data. The results are presented
and discussed.

\ Introduction

Digital processing of images has in recent years
become both economic and practical. Most sophisti-
cated image processing is performed off line on
large machines because of the large memory and com-
putational requirements of the presently used non-
recursive methods. In particular for the image
estimation problem, classical nonrecursive techni-
ques involve operations with large matrices and
their inverses and are hence not suitable for real-
time applications which might include:

1) Restoration of noisy images after reception

on a low power transmission link.

2) Pictures arising from low light level imaging
where back sensor noise significantly con-
tributes to the output signal.

3) Reception of a decoded DPCM image which re-
sults from a maximum-1ikelihood decoding
technique.

4) Processing of non-image two-dimensional (2-D)
data for noise reduction prior to display in
image format.

Previous efforts towards the development of re-
cursive 2-D filters have resulted in algorithms
which for the most part take advantage of one-dimen-
sional approximations or require a state vector with
an exceptionaly large number of components (>100).
Furthermore these algorithms do not take into ac-
count the non-stationarity of the image being pro-
cessed. Thus a constant coefficient two-dimensional
mode! has in general been apriori assumed for the
entire picture.

Consequently, in view of the need for developing
a two-dimensional recursive filter suitable for pro-
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cessing non-stationary images, we have combined a
least squares parameter identification procedure
with the previ?usly developed 2-D reduced update
Kalman filter.

More precisely we consider image models as given
by a half-plane Markovian model2, which is ob-
served in the presence of an additive white Gaus-
sian noise field. Given a set of measurements and
values for the model coefficients, a Kalman type
estimator can be d?signed for estimating the image
pixel intensities.' Computation can be greatly
reduced by limiting the update process at point
(m,n) to only those elements of the image which are
directly coupled to point (m,n) via the Markovian
model. If however, the image is non-stationary
then the coefficients will vary as a function of
the coordinates (m,n). In this case it is desirable
that on-1ine identification of the coefficients be
performed in conjunction with the state estimation.

To this effect, least squares identification was
used to find estimates of the coefficients over
blocks of the image. These estimates were then
used by the reduced update Kalman filter for pro-
cessing those image points contained within the
pertinent block. Results indicate that this pro-
cedure significantly improves on the results ob-
tained using a spatially invariant model.

Reduced Update Kalman Filter

In one dimension, the Kalman filter offers an
attractive solution to the linear filtering and
prediction problem. The extension of one dimen-
sional Kalman filtering to two dimensions requires
not only a suitable 2-D recursive model but also
an enormous amount of data storage and transfer
due to the high dimension of the resulting state
vector. Hence a straightforward extension is of
limited success, and thus it becomes desireable to
consider computationally effective approximations.
Here we review one such approximation, the 2-D
reduced update Kalman filter as presented in [1].

To illustrate this approach, consider the scan-
ning of a discrete 2-D field on an NXN regularly
spaced lattice. Since the scanning operation does
not qualitatively affect the results, we assume a
raster scan,

We now consider a signai model which is Markov-
ian and given by a non-symmetric half plane (NSHP)
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recursive model.?2
s(m,n) = [ cyqs(m-k,n-1) + w(m,n)

o+
where w(m,n) is a white Gaussian noise field ando\
is an NSHP, i.e. {m>0, n>0} Y {m<0, n<0}. We assufte
this model is (MxM)th order. The observation model

i
: r(m,n) = s(m,n) + v(m,n) (2)

where v(m,n) is a white Gaussian source. Using the
scanning operation we transform the 2-D problem in-
to an equivalent 1-D problem. Define a state vec-
tor of m(n+1) componants,

s(m,n) = [s(m,n), s(m-1, n),...,s(1,n); s(n,n-1).
..s(1,n=1)5...3s(n, n-m),...,s(m-m, n-m)]

(1)

then (1) and (2) can be put into the form,

(3)
(4)

fould immediately write down the Kalman
equations! with the above interpretation of the s
vector. The difficulty with these equations is the
amount of computation and memory requirements asso-
ciated with them. By limiting the update process
to only those elements "near" the ‘present' point,
the computation can be greatly reduced. The re- -
sulting reduces update Kalman filter equations can
be written in scalar form as given below. For de-
tails see [1]. In these equations, the superscript
indicates the step in the filtering, while argu-
ments represent the position of the data on the nxn
grid.

s(m,n) = C s(m-1,n) + w(m,n),
r(m,n) = H s(m,n) + v(m,n)
Thus, we

State Prediction and update:
~(m,n) ~(m=1,n)
ib(m’n) - z.+C52 Sa
s (4,5) « s (4,9 4

k(M knet,n-3) - r(m,n)-s ™" (m,n)]

(1i)ge™

Error Covariance and Gain:

Rém'")(m,n;k,l) =) ¢
0,p

(m-k,n-2)  (5)

(6)

R(m-l 'n)(m'oyn’p;kvl-)
op a

(k,n)g(ﬁ"""’ (7)

'")(m.n;m-k.n-l)+ 05

(8)
is the support of the state vector s.

RE™™ (m,nim,n) o) Sty

whergj -

R™ M gska) = ™M (4,53,0) - kT g,
n-3)-R™ M (mansk, 1), (1,9) cpger™s (k2)

DRV (9)

K™ 15y = R 031,33/ (m,nim,n)
"1 (hddeg (o™ (10)

Further reduction in computation can be obtained
by computing (7) and (9) in a fixed size region,

smaller than}(ﬁm’").

red to “7(02.") (see Figure 1).

Such a region will be refer-
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Fig. 1: Specifications ofd® 7 used to Define
Regions Updated.

Identification Algorithm

The implementation of the reduced update Kalman
filter algorithm (5-10) requires the knowledge of the
Ceg's in (5). In the following, an algorithm is

described for identification of these unknown para-
meters. Let us order all Cy € into a column

vector c. Equaction (1) can theh be written as:

(1)

,is the portion of the state vector s in 1
1s active memory, the pseudo-state vector'.

s(m,n) = £T§1 (m,n) + w(m,n),

where s
the modd

Images are, in general, non-homogeneous and
hence the elements of c are spatially variant.
Ideally, then, a c vector should be found for each
pixel (m,n). This, however, would involve a large
amount of computation in both the identification
and the reduced update Kalman filter algorithms.

As a compromise of accuracy versus amount of compu-
tation, we assume regional homogeneity and find a
estimate ¢ for each such region. The least-squares
estimate of c, for a KxK block of the NxN image, is
then obtained by minimization of the following cost
function: K,

K ,\T 2
3 * 1ZJ[sH,J) - £ 5,(1,3)] (12)

which yields (cf.[3,4]):
S ] s() ST tf‘xs 1,§)s(1,4)]
c ;,35 J) 5 (1, 1’3_4 : .

(13)

Effectively, we are implementing a fixed memory vinlta SectRm
filter over the KxK block of an image.

The variance of the plant noise w(K) associated
with each ¢ can RR estimated_using:

°v21(K) 7 l‘t* hf‘“-i)-.c: 5,(1.1)]2 (18)
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are then used by the reduced updated Kalman
filter algorithm,as explained in the next section.

Ih5 parameter estimate ¢ and plant noise variance
g
W

Combined Identification and Estimation

As previously mentioned, the image data field,
in general, is not a stationary field and if repres-
sented by a constant set of parameters, a high
plant noise can be expected. On the other hand,
smaller blocks of the image data field are more
likely to possess the stationarity property, and
thus can be modelled with constant parameters more
accurately.

Hence for simulation purposes, the 128 x 128
image data field was divided into 16 32 x 32 blocks.
Then, the 1024 values of observations from each
block were used to estimate the parameters of the
state model parameter vector through (13), as well
as to estimate the associated plant noise in each
block (14).

These parameter values and associated plant
noise were then passed on to the reduced update
Kalman filter (5-10). From previous experiments,
the required7”p, and R ,, regions were chosen as
shown in Fig. 2? Bound!?y conditions for egns. (7),
(8) and (9) were assumed to be white Gaussian while
those for eqn. (5) and (5) were assumed to be zero.
Though the parameter and gain values were changed
across the boundary of each block in the filter, no
getectable edge effects were noted in the estimated
mage.

The estimated image was then compared with the
noise-free data. Experimental results are given in
the next section.

the consistancy of the identification procedure.
The test data field was subsequently immersed in
noise and filtered with the 2-D reduced update
fiiter. The computed and measured mean square
error were within 10% for the SNR = 3db test case.

B. Processing of Noisy Pictures

The noise-free image, as shown in Figure 3, is
a 128 x 128 image data field. Additive measure-
ment noise w(n) was simulated using a Gaussian
white noise generating subroutine. For simulation
purposes, a 3 db signal to noise ratio was used,
with signal variance equal to 2884. This noisy-
image was processed as described above. The proc-
ess noise variance was experimentially optimized
to produce the best MSE improvement.

Figure 4 shows the 3db noisy image. The esti-
mated imags. using a stationary second order &+
NSHP model¢ is shown in Figure 5. The MSE was
164 equivailent to a 9.44 db improvement. Figure
6 shows the estimated image, using block processing
as described in section 4. The MSE was 134
equivalent to a 10.32 db improvement. This re-
presents about a 20% reduction in MSE. Subject-
ively the noise level seems greatly reduced, how-
ever it appears that some distortion has been in-
troduced by the filtering in some blocks. To in-
vestigate this matter, the noise free image and
the white noise field were seperately filtered
with the results shown in Fig. 7a and 7b, respec-
tively. Figures 7 show that the distortion is
composed of colored noise that has been shaped by
the recursive estimator to have a ‘'local' spectrum
similar to that of the noise free image. Such a
noise is known to be of increased objectionalgty
over an equivalent amount of isotropic noise.

This effect is a direct result of the filter's

being 'tuned' to the 'local' spectrum of the signal.

Thus, although subjectively somewhat heightened by
the block-wise constant model, this effect is felt

to be fundamental to spatially varying filters. A
goal of future work will be to ameliorate this ef-

112|345
6|7(8(9|10
1|12 >
m~a oo
Figure 2: State and Covariance Update Regions

Used for Experiments

Experimental Results

To examine the behavior of the identification
algorithm, it was first applied to an image gener-
ated with a prior known parameters, to be explained
in part A of this section. In part B, the applica-
tion of the identification algorithm to a typical
non-homogeneous image is discussed. This image,
observed through equation (4), was then filtered by
using the reduced update Kalman filter algorithm
using the identified parameters.

A. Testing the Identification Algorithm

omogeneous data field was generated with
known parameters and plant noise variance, so as to
satisfy (11) for all (m,n). The results of apply-
ing the identification algorithm are given in Table
1. As evident from these results, all estimates
improve with an increase in block size, validating

fect. Possible approaches include reducing the
block size. We also note this effect is most pro-
nounced in flat portions of the image.

These preliminary results are, in a sense,
upper bounds on what can be achieved in practice.
This is because the model parameters were calcu-
lated from the noise free image. For the constant
parameter model, the parameters could just as well
be estimated from the noisey image (given the power
of the white observation noise). However for the
block-wise constant parameter model with small
block sizes, use of the noisy data would be ex-
pected to degrade the parameter estimates, espec-
fally so a low SNR's. A possible solutjon to this
problem is the use of prototype images.® The
motivation for doing this initial work involving
noise free parameter estimation was to try, in so
far as possible, to separate the effects of spati-
ally varying filtering from the effects of statist-
ical errors in the parameter estimates. Future
work will account for the bias introduced into the
parameter estimates by the observation noise using
the method of (7].
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Conclusions

The above results show that spatially variant
recursive estimation can significantly improve
image quality compared to spatially invariant or
constant parameter processing. Conversely,
spatially variant processing tends to correlate
input noise in a manner similar to the 'local' cor-
relation of the signal, thus increasing subjective
objectionality in flat portions of the image.
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